翻訳と辞書
Words near each other
・ Wallis House
・ Wallis Lake
・ Wallis Mathias
・ Wallis Moor
・ Wallis Nunataks
・ Wallis Pang
・ Wallis product
・ Wallis Professor of Mathematics
・ Wallis Run
・ Wallis Sands State Park
・ Wallis Simpson
・ Wallis Thomas
・ Wallis WA-116 Agile
・ Wallis WA-120
・ Wallis Walter LeFeaux
Wallis' integrals
・ Wallis's conical edge
・ Wallis, Gilbert and Partners
・ Wallis, Texas
・ Wallischeck Homestead
・ Wallisdown
・ Wallisellen
・ Wallisellen railway station
・ Wallisellen–Uster–Rapperswil railway line
・ Walliserops
・ Wallisian language
・ Walliston, Western Australia
・ Wallisville, Texas
・ Walliswil
・ Walliswil bei Niederbipp


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Wallis' integrals : ウィキペディア英語版
Wallis' integrals
In mathematics, and more precisely in analysis,
the Wallis' integrals constitute a family of integrals introduced by John Wallis.
== Definition, basic properties ==

The ''Wallis' integrals'' are the terms of the sequence
(W_n)_ defined by:
: W_n = \int_0^} \sin^n(x)\,dx,
or equivalently (through a substitution: x = \frac - t):
: W_n = \int_0^} \cos^n(x)\,dx
In particular, the first few terms of this sequence are:

| align="center" | 1
| align="center" | \frac
| align="center" | \frac
| align="center" | \frac
| align="center" | \frac
| align="center" | \frac
| align="center" | \frac
| align="center" | \frac
| align="center" | ...
|}
The sequence \ (W_n) is decreasing and has strictly positive terms.
In fact, for all n \in\, \mathbb :
*\ W_n > 0, because it is an integral of a non-negative continuous function which is not all zero in the integration interval
*W_ - W_= \int_0^} \sin^(x)\,dx - \int_0^} \sin^(x)\,dx = \int_0^} \sin^(x)\, (- \sin(x) )\,dx \geqslant 0
:(by the linearity of integration and because the last integral is an integral of a non-negative function within the integration interval)
Note: Since the sequence \ (W_n) is decreasing and bounded below by 0, it converges to a non-negative limit. Indeed, the limit is zero (see below).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Wallis' integrals」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.